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ABSTRACT

Part I is devoted to the general theory of digital filters.

The filtering theories for both continuous-time and discrete-time sig-
nals are formulated in terms of abstract Hilbert space, with the notion
of a stable filter defined as a bounded linear operator. This abstract
setting allows the z-transform to be defined with the same generality as
the Fourier transform. A specific isomorphism is then constructed which
connects the filtering theories for continuous-time and discrete-time
signals, and in the linear time-invariant case the two theories are shown
to be essentially identical. This means that many optimization problems
can be solved simultaneously for continuous-time and digital systems.

In the second pa-t, the iscmorphism developed in Part I is used
to reduce the approximation problem for digital filters to that for
continuous-time filters. This allows the designer of digital filtering
canputer progrems to use many of the concepts which have proven important
to the commmnications engineer.

In the last part, the problem of estimating the power-spectral-
density of a signal from equally spaced samples is discussed. It is
shown that bandpass digital filters generate a class of spectral windows
which produce always positive estimates of the power-spectral-density.
The optimum bandwidth and shape of such a filter are then derived.
Finally, a method for identifying unknown parameters in the power-spectral-

density of a digital signal is presented.
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PREFACE

Historically, methods for processing signals that are functions
of continuous time were developed long before the advent of high speed
digital computers. When high speed computing facilities did became
available, the commnications and control engineers were not the people
who developed computing techniques. As a result, the filtering theory
that had been highly developed for continuous-time signals was not applied
in full force for the processing of digital signals.

The main purpose of this thesis i1s to tie together the theories
of filtering digital and analog information. This will enable the data
analyst to carry over effectively to his domain many of the concepts which
have been important to network designers. In particular, all the approxi-
mation techniques developed for continuous-time filters become available
for digital applications.

The strong link that is developed between the digital and con-
tinuous domains will also be of theoretical value. It will present to us
a unified picture of signai and filtering theory, a picture chat is

equally applicable to digital and continuous signals.



PART L: THE GENERAL THEORY OF DIGITAL FILTERS

l. Introduction

It is easy to observe a parallel between signal theory for
signals with a continuous time parameter and signal theory for discrete-
time signals. In fact, it is common practice to develop in detail a
filtering theory for continuous-time signals and to pay less attention
to the discrete theory, with the assumption that the derivation in the
discreie case follows the one for continuous-time signals without much
change. Thus, without going into details,1’2’3 the Wiener filter for

a noise-corrupted continuous-time signal is

Fo(s) = — rérir(s)]xm ’ .

Y(e) L Y(e) briry (8)

and the optimum filter in the discrete case 1is

1 rlr(z) ]
Y(Z)L Y(z) JIN|z]=1 ’

Fo(z) = éryry (2)
where r is the uncorrupted signal and r, is the corrupted signal. On
the other hand, the two cases are always considered as distinct and -
essentially different situations.

This correspondence between continuous and discrete phenomena
is far from accidental, howe':r. In fact, when both theories are
axiomatized in terms of Hilbert space theory (L, and 1, theory), they
are isomorphic. This simple fact is quite illuminating and leads to a

more unified theory of filtering and prediction.



Usually, it is assumed that the signals of interest are of
exponential order as t becomes infinite. This leads to two-sided
Laplace transforms which converge in a strip in the s-plane, or double
ended z-transforms which converge in an annulus of the z-plane. This
is replaced in Hilbert space theory by mean convergence on the Jw-axis
and unit circle, respectively. In one sense the signal spaces L, and
1, are more restrictive, because they do not include signals of posi-
tive exponential order. On the other hand, assuming that we are
dealing with physically real signals, the spaces I, and 1, are more
general and intuitively satisfying; roughly, they include all signals
whose total energy content .: finite.

Oux main purpose in this first part, then, will be to imbed
the theory of continuous-time signals in L, theory and the theory of
discrete-time signals in 1, theory; and to show that the filtering
theories for these two classes of signals are essentially the same.

We will thus arrive at a definition of digitel filter that is as
general as the definition of continucus-wave filter, and we will show
that many problems in the design of discrete-time systems need not be
re-solved. As a by-product, we will see how well Hilvert space theory
is suited to describe linear filtering theory for both continuous and
discrete time.

Wnile Youla, Castriota and Ca.rl:[n,h and other network theo-
rists have applied Lo theory to continuous-time network theory, to

the author's knowledge 1 theory has not been applied to the z-transform



and the isomorphism between L, and l; has not been exploited by
electrical engineers.
We Legin with a review of the elements of Hilbert space

theory.5’6’7

2. A Review of Hilbert Space Thecry

We will adopt the widely accepted definition of abstract
Hilbert space. That is: a set H of arbitrary elements f,g,... (some-
times called functions or vectors) is termed a Hilbert space if:
I. H is a linear space.
II. An inner product is defined in H as follows: to every
pair of elements f,g there is associated a complex number
(£,3) such that
1) (f,8) = {g,f)
2) (of,g) = a(1,g)
3) (f3+fy,8) = (£,,8) + (f,,8)
4) (f£,f) = O if and only if £ = O.
III. Tae space H is complete in the metric ||f-g]| =
(f-g,f-s)"?-
IV. His infinite dimensional; that is, for any integer n
there are n linearly independent elements in H.
V. H is separable; that is, H contains a countable and dense
set. (This condition is often omitted, allowing spaces

of dimension higher than z‘\o).



Thus, a Hilbert space is a complete, separable, infinite-dimensional
Euclidean space.

Historically, two concrete realizations of Hilbert space play
central roles. The first is the space Ly(a,b), which is defined to be
the set of all complex-vulued Lebesgue measurable functions on (a,b)

such that

b
[ l£(t)P dt < @ .
J
a

The inner product in this space is defined by

b
(f,8) = J‘ f(t)g(t) at .
a

Two functions in L, are considered equal if they differ only on a set
s

of measure zero. Since the metric in this space is (f-3,f-g)~, the

sequence fp will approach f if

lim Ith-£1° at =0 .
n

b
.f
-.mg]

This will be called mean convergence and will be written

A T R O
n-=2aL

The other Hilbert space 1s called 1,. It is defined to be the

set of all sequences of complex numbers



X = [xt,x?,oco,xn’tco}

satisfying the condition

Q0

Z % <0 .

=1

Here, the inner product is defined by

00
(x)Y) = 2‘ Xn 5:1- .
=1

(Sometimes it will be convenient to think of 1, as containing double
ended sequences: {..,.X.1, Xg, X3,Xp,---}. The theory is really the
same. )

For us, the space L,(-®, +oo) will play the role of the space
of continuous time signals, ar? 1, will represent the space of discrete-
time signals.

An isomorphism from one Hilbert space H; to another Hilbert

space H, is a one-to-one linear transformation U from H; onto li; such
that (Ux,Uy) = (x,y) for every pair of vectors x.y in H;. An isororphism
preserves all the structure embodied in th« definition of Hiltexrt space
and isomorphic Hilbert spaces are geometrically indistinguishable and

for our purposes can be consldered as identical.

The following theorem is central for our purposes:

Theorem 1. All Hilbert spaces are isomorphnic.



The proof of this theorem is interesting and useful. We now review its
main points.

1. 5Since H is separable, we can choose in H a countable dense set.
From this set we can construct an orthonormal set {hx,h,,ha,...} that i3

complete in H. That is,

01is 1
(hy,hy) = {1 i; 1113 ’

and linear combinations of the hj are dense in H.

2. This implies that any element of H can be approximated with
arbitrary accuracy by linear combinations of the hj. If we define the

partial sum of a generallized Fourier series by

n

S

Sp = 2‘ cxhx
k=1

then the distance between Sp and f in the metric of H is smallest when

In that case, we have in fact

Now let n approach infinity. OSince 5, is the best n-th order approxi-
mation to f, and since the orthonormal set {h,,h,,...} is complete, we

must have



lim ||f-s4l]2P =0 ,
n - oo
and hence
@
k=1

3. Conversely, let c¢;,c,,... be a sequence of numbers such that
@
) ekl <o

k=1

and construct the sequence of partial sums

n
fn = Z‘ ckhy .
k=1
It then follows that
n+p
Nemprtal P = ) el .
k=n+l

As n approaches infinity the right side goes to zero. The left side
nust go to zero, and this implies tnat the sequence f, is fundamental.
The fact that H is complete in its metric then implies that there is a

limit function f ¢ H such that
Hf'fn” -0
as n = oo. It then follows easily tnat

cg = (£,ky)



and that

o>~8

(f:f) = |ck|2

k=1

L, Ve now assign to each element in H the sequence {c1)C2)°"] of
its Fourier coefficients. By step 2 above this is an elemocnt in 1,.
Furthermore, by step 3, for each element {c;,c,,...} in 1, there is an
f in H which has Fourier coefficients {c¢;,cs,...}. This correspondence
is linear, one-to-one, onto, and preserves norm. It is therefore an
isomorphism, and we have therefore shown that any Hilbert space is iso-
morphic to 1,, and hence to any other Hilbert space. In the case
H = L,(a,b) this procedure corresponds to mapping a function to the
sequence of its coefficients in some orthogonal expansion on the inter-
val (a,b); such as an ordinary Fourier series on (0,21) or a Laguerre
series on (0,00), for example.

Vith this review we go on to apply tlese ideas to more familiar

situations.

3. [Ixiomatization of Deterministic Sipgnal Theory

In most deterministic situations encountered by engineers, the
signals are ecitner functions of a continuous time variable or a discrete
time variable. In elther case, the total energy contained in a signal
is really finite, even though we make up models which deny this. For
example, we say that a step input is applied to some system at t = O and

we write
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f(t) =

This 18 clearly not realistic. The definition

O -0<t<O
£(t) = {1 0<t<T
o) T<t< o

vhere T is very large; or the definition

0O -0 <t<O0

f(t) = {

e o<t <

vhere @ is very small, describe the situation just as well. Thus,
without serious limitation, we cen assume that any wave will have a
finite total energy. With this assumption, Hilbert space L,(-co,m),
with its convenient completeness and with its continuous Fourier trans-
form, provides a neat setting for our discussion of deterministic
signals which are functions of the continuous time parameter t.

Similarly, when a signal is & function of discrete times, the
Hilbert space 1, is a realistic model with many convenient mathematical
properties. From now on, & function in L,(-c0,00) will be called an
analog signal, and a function in 1, will be called a digital signal.

It is now rather startling and counterintuitive to the engineer
that L,(-co,00) and 1, are isomorphic. /After all, any signal in 1,
could have been obtained by sampling at discrete times any one of an

infinite number of analog signals. The problem here is that the mapping



L,(-00,00) — 1, defined by sampling:

£(t) = {...,£(-2T),f(-T),£(0),£(T),...}

.

is not an isomorphism, since it is not one-to-one. Nevertheless, L,
can be made isomorphic to 1, by an appropriate choice of mapping; in
the same way, for example, that the Abelian group of integers can be

made isomorphic to the Abelian group of even integers.

L., The Transform Domains

Our next goal will be to construct a specific isomorphism
which can serve as a concrete link between the analog and digital sig-
nal spaces. Naturally, we would like the mapping to have some intuitive
significance. The very natural correspondence provided by sampling
analog signals has been ruled out because it is not an isomorphism. It
would still be desirable, however, to have the left half s-plane corre-
spond to the interior of the unit circle in the z-plane, because these
regions seem to play analogous roles, even when no signels have been
sampled. To make these ideas precise, we must add the Laplace transform
and the z-transrorm to our Hilbert space theory.

The key theorem for the construction of a transform domain for

L,(-00,00) is called Plancherel's Theorem:8’9

Theorem 2. (Plancherel) If r(t) ¢ L.(-co0,00), then




A
f £(t)e Bt at (I-1)

exists for s = ju, and F(Jw) € L,(-00,00 .

Furthermore,
+00 +i00
(f,f) = F Ir(t) ] at = zig IF(s)I° as . (1-2)
-00 -560
and
A
£(t) = 1l.i.m. F(s)eft at . (I-3)
A - 00-3%

Analytic extension of F(jw) to the rest of the s-plane (via (I-1) when
it exists, for example) will give us the Laplace transfomm.

lie will also uce Parseval's Theorem:

Theorem 3. (Parseval) If f,g € L,(-00,00), then

00 Jjoo
(f,g) = r £(t)e(t) dat = . S | F(s)G(-s) ds

J 21

- -jo (I-14)

The theory required for the enalogous construction of a z-
transform for digital signals is really no more than the theory of
Fourier series. Think of the original periodic function as the z-
transform evaluated on the unit circle in the z-plane; and think of
the Iourier coefficients as the values of our digital signal. The

8,10

Riesz-I'ischer Theorem then reads:



Theorem 4, (F. Riesz-Fischer) If (fn}‘?_"_mc 1., then

|

P(z) = lL.i.m Z eEl (1I-5)
N=o N

exists for z = e‘jc‘—’T , and F(eJ‘ET) € L;,(O,Zn/T), vihere w is the independ-

ent variable of L,(0,2x/T), and this w is unrelated to tre w used in the

s-plane.
Furthermore,
+00
({tn}, {£0]) = Z len° = L (l:'F(Z)P a2 ) (1-6)
s 29 z
lz|=1
and
- _ 1 r n dz -
£5 o (,‘,) F(z)z = . (I-7)
|z]=1

3
As in the analog case, the analytic extension of F(e“LBT) to the rest of
the z-plane will coincide with the ordinary z-transform, which is
usually defined only for digital signals of exponential order.

Parseval's relation also holds:

Theorcnl 5. (Parseval) If {f,},{g,} € 1., then

oo P
({tn},{ca}) = z fnen = ﬁ j/ F(z)G(z™") dzz . (I1-8)
n=-00



1L

To summarize, we have defined an analog si~nal snace Ln(-oo,OO);
together with its transform domaln, wiich, when s = jw, is also
L,(-00,00). Analogously, we have defined a digital signal space 1,;
together with its transform domain, which, when 2z = ed¥T 45 L,(0,2x/T).
We now are in a position to define a specific isomorphism between the
analog and digital signal spaces via their transform domains; a procedure

which was hinted at before.

5. A Specific Isomorphism, p

Remembering that we wish to map the jw-axis in the s-plane onto

the unit circle in the z-plane, the familiar bilinear transformation

.oz=1 _ 1lts
2+l l-s

(4]
!

is a natural cnoice. There is an additional factor required so that the
transformation will preserve norms. The image {fj} € 1, corresponding
to f(t) € Ly(-00,00) will then be defined as the sequence with the z-

transform

\
F(z) = Ve F ( z-1 ., where we use the underscore
z+l 2+l - to denote digitel domains.

Thus, the mapping p:L.(-00,00) — 1. is defined by a chain which goes

from L,(-0,00) to L,(-00,co0) to L,(0,2:/T) to 1., as follows:
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2 \/-" ( z-1 ) &
:" - - & = - b4 . I'
u:f(t) = F(s) = F (. = F(z) = {£3} (I-9)

The inverse mapping i1s easily defined, since each of these
steps is uniquely reversible:

wte{) - F(z) - : F<l+s >= F(s) = £(¢t) .

1-s l-s3

The mapping p and its relations to the various spaces are shown
schematically in Figure 1.

To show that u is indeed an isomorphism, we first verify that
B preserves the inner product. Let f end g be any two analog signals.

By Theorem 3 (Parseval's relation for analog signals), we have

joo
I 's)G(- .
(f,g) 53 J F(s)G(-s) as
-Jw

Letting z = i+2 , this becomes, with some algebraic manipulation,

Zrd

(£,8) = —X 4-;2(2)9(2'1)‘—?— :

~

|z|=l
Then, using Theorem 5 (Parseval's relation for digital signals), we

find that p does preserve the inner product:

(r,8) = ({£,},{gg})

p is obviously linear and onto. We can row show that g is one-to-one
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in the following way: if f # g, then (f-g,f-g) = ({fn]-fgn],[ﬁn]-[gn])
7 O; which implies that {f,} 7 ‘g,}, and hence that u is one-to-one.
This establishes the fact that u is an isomorphism.

We note here that under the isomorphisms n and ™' functions
with rational transforms are always matched with functions with rational
transforms, this fact following from the nature of the transformation u.
This is a great convenience, since many of the functlons comuonly en-
covntered in engineering problems nave transforms which are rational

functions of s or z.

6. The Orthonormal Expension Attached to u

In our review of Hilbert space theory we showed now a set of
orthonormal functions generated an isomorphism between two Hilbert
spaces. It should come as no surprise, then, to learn that the iso-
morphism p could have been so generated. This section will be devoted
to finding this orthonormal expansion.

We start with the z-transform of the digital signal {fj]} which

is the image under p of an arbitrery analog signal f(t):

0.0
Js z-1
i = F< >= 2 f -n
£(z) z+1 z+l =n 2
=-

By (I-7), the formula for the inverse z-transform, we nave

- 1 § \[-2 F(Z-l P dz

f
-n 2%d z+1 < z+1 z
|z |=1
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Letting z = iff , this integral becomes
?
£o= L | F(s) . YE <1+S>nds : (I-11)
- 2nJ J 1+s l-5s
-Jm

By Parseval's relation (I-4), this can be rewritten in terms of time

functions as
[0's)

fn = J £(t) \p(t) at (1-12)
-00
where the A\p(t) ere given by the inverse Laplace transform of the factor

appearing in the integrand of (I-11) with s replaced by -s. Thus:

I. n
(o) = Y- ()]

We see immediately that, depending on whether n > O or n < 0, Ap(t)
vanishes for negative time or positive time, respectively. By mani-
pulating a standard trensform pair involving Laguerre polynomials, we
find:

((c1)» 1z et n_((2t) u(t) , n=1,2,3,...,

An(t) =
1(-1)”1 Sz et L_(-2t) u(-t) , n = 0,-1,-2,...,
(I-14)

where u(t) is the Heaviside unit step function, and L,(t) is the Laguerre

polynomial of degree n, defined by:

t n -
Ln(t) = i, éin (t%"%), n=0,1,2,... .
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@
The set of functions {An}n- is a complete, orthonomal sct on (0,00),

]
and are called Laguerre functioas. They have been employed by Lec,ll

12

Wiener,™™ and others for networ: synthesis; and are tabulated in

Wiener,l“ and, with a slightly different normalization, in Head and
Wilson.'3 The functions fk-n]gzo are similarly complete and orthonormal
on (-00,0), so that the orthonomal expansion of f(t) corresponding to

(I-12) is

r(t) =

~"8
g"ﬁ

N E (I-15)
==-00

We see then, that the values of the digital signal for 1 -~ O correspond

to the coefficients in the Laguerre expansion of f(t) Jor positive t;

and that the values of the digital signal for n < O correspond to the

coefficients In the Laguerre expansion of T(t) for negative t.

There rollows from this representation the fact that the iso-
morphism u matcnes ogne-sided functions with one-~": . tunctions. That
is, f(t) = O for t < O if and only ir {f;} = O for n < 0; and sinilarly,
f(t) = 0 for t ~ 0if . only if {£,} = O for n - O.

© .er orthonormal expansions, such as the Hermite, for exzample,

also generate isomorphisms; but these will not be as convenient and
as simple for our purposes as the Laguerre expansion. In particular,

16

Kautz,lh (}abor,*b Huggins, and others have considered the construction
of orthonomal functicns for signal representation.
The fact that the marping u is cquivalent to a Laguerre expan-

sion can sometimes lead to a quick way of expanding a given time function
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in a Laguerre series. One need only find_f(z) from the Laplace trans-
form of f(t) and expand this in a power series in z. To illustrate
this, and the woy that the mapping p works in general, consider the
function

£(t) = e ¥ sin t u(t)

This function is in L. and its Laplace transform is analytic in the

half-plane Re(s) ~ -1. Thus,

1
Fls —
2 (s+1)® + 1 ’
and
F(z) = Ve (z11)

_Jp f 1 -1, _3 ,-=2_ _11 -3, L ]
L5 25 125 525
Thus, by (I-15),
(1) = V2 [ Ay (1) + =2 (1) - =21 a, (1) ¢ =L A, (8) ¢ .
— L.)

5 125 625

These coelficients can be checiied by carrying through the intesrations

indicated in (I-12).

T. Stable I'ilters as Bounded Linear Operators

We come now to the problem of incorporating within our rrame-

work the concept of "filter" or "transfer rfunction.” Trat is, we wish
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to formulize the notion of a device which transforms onec element of
Hilbert space into another. OSuch a device might be a network of resis-
tors, inductors, and capacitors which transforms one analoz signal into
another; or it might be a digital computcr which transforms cne digital
sipgnal into another such signal. We assume, mostly because we nust to
achieve any generality, that such filters are linear. It is also
reasonable to expec’ that if we limit the energy content of the input
function to a stable filter, that the energy content ol the output will
De linited.

Fortunately, operators with such properties have been studied
widely in connection with Hilbvert spacc.5’6’7 fn operator A in a
Hilbert space i is defined as a transformation whichi attaches to cach
element I in H some element Af which is also in H. An operator £ is

said to e li.aeur if
Llaf + Bg) = QA + fig

for any T,mg in H and any comploex nunbers ¢ and B. Lastly, correspond-
ing to our energy requirement, 2 lincar operator is sa’d t> be bouwded

if there is a positive real number I! cuch that
Harll < m {lel]

for all f in H. The norm o the linecr operator fi is tue nfimum of
all such values of M, and is written |l.l]. Equivalently, the nom or

A can be defined as
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| 15]] = sup _nell . (1-16)

reg ot

One example of & bounded linear operator is the Fourier trans-
form. By (I-2) tnis operator has & norm equal tO'Ji/Zx. As another

example, consider a simple low-pass RC section with the transfer function.

[ &)

If an input wave f(t) is applied to this network, the total energy in

the outpnut will bhe

joo joo
2 ! -~
: [ 7)) P |l ds <=2~ | [F(e) P a5
21 ' - R T = ER !
-jo -Sjoo

so that the norm of this operator cannot exceed 1. Since this Is a
passive network, it is to be expected that tne total output encrgy
cannot exceed the input energy.

We are thus led to adopt the following terminolog,: .. bounded

linear operator on the space L., will be called a (linear) ane.og lilter

and a bounded linear operator on l, will be called a (linear) digital

filter.

It is now a direct consequence of our axiomatic setup that any
bounded linear operator is continuous in the metric of Hilbert space.
That is, if {fn}ggl is a sequence of functions in the Hilbert space H,

and if  1s a function in H such trat
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Um ||r, - £|| =0 :
n- oo

then
um  lagg - Al -0,
n - o

vhere A is a bounded linear operator. Thls follows immediately fror
the fact that

[t - arll < [la]] - flen - £f

Continuity is a desirable property of operators. In L., for
instance, it means that if input functions to an analog filter [,
approach a function f in the mean, then the output will approach Af in
the mean. This convenience is bought at the price of considering only
functions in L. and using mean convergence as the convergence criterion.
If we insist on thinking in terms of pointwise convergence, for instance,
we lose continulty; as the following example snows: Let a set cf input
functions to some network approach the delta function. The pointwise
limit of the input functions is then O almost everywhere. But in gea-
eral the output will not approach O, so that filters will not be con-
tinuwous in this framework. In a way, our convergence criterion is more
natural than pointwise convergence: for a sequence fn 1o approach f in
the meen we demand only that the totel energy of f-f approach zero.

Since p can be thought of as a bounded lincar operator in the
abstract Hilbert space H, u is continuous. Similarly, tae Fourier
transform is continuous. Alsc, since 1., and L,(O,Zn/T) are isomorphic
Hilbert spaces, the z-transform as defined in Theorem 4 is also contir-

uous. We summarize these facts in the following theoren:
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Theorem 6. All bounded linear operators are continuous in the metric
of Hilbert space. In particuler, the following bounded linear opera-
tors are continuous:

1. Analog fllters

2. Dirital filters

3. The Fourier transform

4. The z-transform

5. The isomorphism u

8. The Mapping u for Filters snd the Transforms of Filters

Since our signal spaces are now equipped with operators, it is
natural to cxtend our isomorphism u so that it matches operators that
act equivalently in the two spaces L, and 1.. More precisely, if A is
an analog filter, we define its image u(L) - Q in the following way:
let x be any digital signal. Then there corresponds to x a unique
analog signal “-1(5). The result of operating on this analog signal by
the analog filter A, Au'l(i), is also well defined. This new analog
signal cen then be mapped by p into a unique digital signsl uAu'l(i),
which we designate as the result of operating by g on x. Thus, we

define A to be the composite operator
A= paptt (1-17)

To avoid confusion between digital filters and z-transforms of digital

signals, we use the double underscore.
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It is easy to see that the mapping u for operators is lincer,
one-to-one, and onto. Given a digital Iilter Q, its corresponding
analog filter 1is u'lgu. To show that the norm of an operator is pre-

served under the matching p, we need only carry out the following

calculation:
Hax!| |l (Au™ {x) )] |
lall = sup ——= = sup T
xel, |1x| xela 3l
B (1-18)
T T €3 A — |1f»”~".! - 1Al
xel, [0 xeln x|

It should be pointed out that in one sense there is really no problem
here. The spaces L, and 1, are isomorphic; -- an analog filter and its
digital image under u are just two names ror the same abstract opject.
Having defined the effect of u on filters, we should aow like
to do the same for the Fourier and z-transfcnns. This can be done in
an equally natural way. Suppose A is an analog filter, a bounded
linear operator on the space L. of analog signals. The analog signal
space is mapped by the Fourier transform operator, say:?f( ), into a
new space L,, tne space of Fourier transforms. The Fourier transform
of the operator /., denoted by °F (A), will then be defined as an oper-
ator on this transform space so that if .. maps f to g, then f}:(ﬁ) maps

F(s) to G(s). Analogously to (I-17) above, we require

F) = FF (1-19)
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where ﬁ}( ) denotes the Fourier transform of an analog signal as well
as an analog filter. Going througn thne same calculation that we per-
formed for u, we find that the Fourier transform preserves the norm of

a filter:

DS OHERTITE (I-20)

Similerly, we define the z-transform of a digital filter A by

2@ = %a 3 (I-21)

where ’}( ) denotes the z-transform of a digital signal or Tilter.

ihgain, tne norms of filters are preserved:

i (r-22)

@11 = 1

Vle have now generalized p so that it pertains to filters as
wvell as to signals, and we have defined the transforms of filters.
Thus, a diagram analogous to Figure 1 can be drawn ror filters, and this
is shown in Figure 2. The connection between the Fourier transforms of
analog filters and the z-transforms of digital filters is well defined
by the three legs of the diagram, but nothing more than that can be

said at this time.

9. Some Familiar Classes of Filters

In this section we will show hcw the preceding tneory of

filters applies to many situations that are commonly encountered in
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engineering. For instance, time-invariant filtering is usually expressed
by convolution in the time domain and by multiplication in the transform
domain. Such time-invariant filtering is described in the analog case by

the following theorem:

Theoren 7. Let a(t) be a measurable function satisfying
00

{ la(t)] dt <@ (I-23)
-
That is, let a(t) belong to L,(-00,00). Let the operator £ be defined
by the following convolution integral:
o)
Af(t) = ( f(r)a(t-1) ar . (I-24)
-0

Then A is an analog filter with norm

00

a1 < [ la(t)] at .
-
Turthermore, the Fourier transform of the operator A is mult )licetion

by the function i(s), the Fourier transform of a(t).

The proof of this theorem is a direct consequence of Scawarz's inequal-
ity and can be found in detail in Titchrmarsh,? section 3-13.

This theorem applies to any linear time-invariant filter whose
impulse response satisfies (I-23). Thus, any stable RLC network is an

analog filter. Theorem 7 can also apply to the case where A is the
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identity operator Af = f, provided we are willing to adnit the delta
function as a sifting function satisrying (I-23).
necessary .o introduce distributions or other generalized functions
on this account, however, since the identity operator is clearly a

bounded linear operator in its own right.

It is nardly

The following theorem for time-invariant digital filters can

be obtained in exactly the same way as Theorem 7T:

Theorem 8. Let {gn} be a sequence of complex numbers satisfying

Q0
) lepl<o
n=-co

and let the operator 4 be defined on the space of digital signals by

the fullowing convolution sum:

90

] = 21 an-i
i=-00

: g,

Then / is a digital filter with nom

(0.0

el < ) legl

n=-Qo

Furthermore, the z-transform of the operator /. is multiplication by

A(z), the z-transform of the sequence {ay].

(I-25)

(I-26)

Now consider the case where the digital filter A in Theorem 8

is the image under pu of the analog filter A of Theorem 7.

Since the
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Fourier transform of Af is A(s)F(s), the z-transform of the digital

signal u(Lf) is

2, ( :;Ji >F(z‘1 Y- A(z)F(z)

z+] Szl

Therefore

W(z) = A( Z'1> . (1-27)

z+1

[ [pett

Thus, the transforms of filters which are equivalent under the iso-
morphism u are related by a simple change of variable. This cbserva-
tion will be useful when we consider the approxim.tion protlem for
digital signals.

By reversing the roles of the time and transform domains in
Theorems 7 and 8 we come to consider the operation of multiplication by
bounded time functions, or, in electrical eagineering terms, amplitude

modulation. More specifically, we have the following pair of theorenms:

Theorem 9. Let a(t) be a bounded measurable function of time, and let
the operator &\ be defined on the class of analog signals by multipli-

cation:

Ar(t) = a(t)r(t) . (1-28)
Then /. is an analog filter with nom

Hall < sup  la(t)|
all t
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Theorem 10. Let {nn] be a bounded sequence of complex numbers and let
the operator Q be defined on the class of dizital signals by multipli-
cation

b Lg,) = (ant,) (1-29)

Then A is a digital filter with norm:

211 < sup ap] .
ell n

The proofs follow immediately from the relations

e il
2 [ sup ]3 . 2
[ la(t)£(t) |? at SLall t|a(1;)| ’ It(t)]° at
S -0
and
23 x

. -2
lontnl® <[ 52 lenl] - Y gl

n==-m n=-00
When the trensforms of a(t) and {a,} are in L,(-o,m) and L,(0,2:/T),
respectively, it can be shown that the transforms of these multiplica-
tion operators are convolution operators on the jw-axis or unit circle.
This representation is not important for us, however.

It is now easy to see that bcunded linear operators are not in
general commutative. That is, if .. and B are two bounded linear oper-
ators, then it is not necessarily true that B(.if) = £(Bf). Take, for
cxample, the case where [. 1s muliiplication by u(t), and B is an RLC

filter. /. and B do commute, however, in the special cases when /. and
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B are both multiplications as in Theorems 9 or 10. In general, we have

the following results concerning combinations of opcrators:7

Theorem 11. If .. and B are bounded linear opera‘ors, then A+B and B

are also bounded linear operators, and

|l+Bl} < Hall+ LBl

and

Hatl - 11s]]

| 1aB]!

IN

10. A General Matrix Representation for Filters

Vle have seen in the last section how certain classes of filters
can be represented in the time domain by convolution with time-invariant
weighting functions or by multiplication. It would be desirable, how-
ever, to nave a representation valid for any bounded linear operator.
Such & representation can be constructed in the same way that matrices
can be constructed from linear operators on a finite dimensional vector
space;, - that is, by examining the effect of an operator on a set of
elements which forms a vasis. Tnus, if .\ is a linear operator in a
finite dimensional vector space of dimension n, and if {e1,e:,...,en}

is a basis, we can assemble the following array of equations:

Ae; = 31181 + 51982 + o T alnen
he, = Bpy1ey t agaey + ...+ a5 e,

(I-30)
Acn = apj€e; * ap.e; * ... + a e,

as
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In this way, every linear operator is associated with a unique nxn
matrix {aij]° Converseliy, every mxn natrix determines a linear operator,;

for if x is a vecior with componenis {%q,Xs,...,Xp},

13

n

n
Ax = L Z_ xjey = (Z xiaid) ey . (1-31)

~

j=1 1=1

[oN
1}
—

This procedure allows us to characterize bounded linear oper-
ators in the infinite dimensional case, provided we impose an appropri-

ate condition on the elements of the matrices involved:

Definition: The infinite matrix {aij} is sald to te bounded if

(o0
1,J=-c0

for some constant M we have

S L . q 5
2 ¥y s ) iyl ) Iyl (1-32)
J=-r i=-p i=-p j=-r

for any nuabers x_p,x_p+l,...,xo,x1,...,xq and YoprYopspreccsdgoYraeeesYge
We then have the following result, which is proved in alihiezer

and Glazman:6

00
Theorem 12. Let {ei}i- - be an orthonormal basis for the Hilbert space
H. Then every bounded linear opcrator determines a unique bounded in-

finite matrix {aij} by

o0
Jey = Z aj je: , I = aae ;o] 40,12 jane o ; (1-33)



Conversely, every bounded infinite matrix determines a bounded linear

operator in the following way: If fe¢H has the orthonormal expansion

oo

f = E fiey ,
i=-0c0

put

=-00

© o
AL = }: < Z fiaij> ey . (I-34)
J=-0 1

For a fixed basis, we write % \a{aij] vhenever the bounded
linear operator {. adnits the bounded infinite matrix representation
[aiJ]° In analogy with the finite dimensional case, it can be shown

that if A '\/{aij} and B ‘v {bgj}, then

At+B ~v {ai,jﬂ)ij} ’ (1I-35)
and
e
BA "v{ \L aikbks} , (I-36)
=- 0o

where BA(f) = B(A(f)). We have thus constructed a matrix-mechenical
representation of signal filters, very much like that employed in
quantum mechanics. Sometimes it will be convenient to think of a
filter as being disconnected from botn the input anc the output for
negative time. In this case we need only consider the lower right
quandrant of the matrix: {aij]??j=l.

The interpretation of this natrix representation in the digital
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